High Mass Accuracy Phosphopeptide Identification Using Tandem Mass Spectra

نویسنده

  • Rovshan G. Sadygov
چکیده

Phosphoproteomics is a powerful analytical platform for identification and quantification of phosphorylated peptides and assignment of phosphorylation sites. Bioinformatics tools to identify phosphorylated peptides from their tandem mass spectra and protein sequence databases are important part of phosphoproteomics. In this work, we discuss general informatics aspects of mass-spectrometry-based phosphoproteomics. Some of the specifics of phosphopeptide identifications stem from the labile nature of phosphor groups and expanded peptide search space. Allowing for modifications of Ser, Thr, and Tyr residues exponentially increases effective database size. High mass resolution and accuracy measurements of precursor mass-to-charge ratios help to restrict the search space of candidate peptide sequences. The higher-order fragmentations of neutral loss ions enhance the fragment ion mass spectra of phosphorylated peptides. We show an example of a phosphopeptide identification where accounting for fragmentation from neutral loss species improves the identification scores in a database search algorithm by 50%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry.

Mass spectrometry has played a significant role in the identification of unknown phosphoproteins and sites of phosphorylation in biological samples. Analyses of protein phosphorylation, particularly large scale phosphoproteomic experiments, have recently been enhanced by efficient enrichment, fast and accurate instrumentation, and better software, but challenges remain because of the low stoich...

متن کامل

Correction of errors in tandem mass spectrum extraction enhances phosphopeptide identification.

The tandem mass spectrum extraction of phosphopeptides is more difficult and error-prone than that of unmodified peptides due to their lower abundance, lower ionization efficiency, the cofragmentation with other high-abundance peptides, and the use of MS(3) on MS(2) fragments with neutral losses. However, there are still no established methods to evaluate its correctness. Here we propose to ide...

متن کامل

MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a m...

متن کامل

MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra

Today's highly accurate spectra provided by modern tandem mass spectrometers offer considerable advantages for the analysis of proteomic samples of increased complexity. Among other factors, the quantity of reliably identified peptides is considerably influenced by the peptide identification algorithm. While most widely used search engines were developed when high-resolution mass spectrometry d...

متن کامل

Preprocessing of tandem mass spectra using machine learning methods

Protein identification has been more helpful than before in the diagnosis and treatment of many diseases, such as cancer, heart disease and HIV. Tandem mass spectrometry is a powerful tool for protein identification. In a typical experiment, proteins are broken into small amino acid oligomers called peptides. By determining the amino acid sequence of several peptides of a protein, its whole ami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012